توربین بادی به توربینی گفته میشود که برای تبدیل انرژی جنبشی باد به انرژی مکانیکی به کار میرود که توان بادی نام دارد. توربینهای بادی در دو نوع با محور افقی و با محور عمودی ساخته میشوند.
توربینهای بادی کوچک برای کاربردهایی مانند شارژکردن باتریها یا توان کمکی در قایقهای بادبانی مورد استفاده قرار میگیرند، در حالی که توربینهای بادی بزرگتر با چرخاندن ژنراتور، و تبدیل انرژی مکانیکی به انرژی الکتریکی، به عنوان یک منبع تولید انرژی الکتریکی بهشمار میروند. انواع دیگری از توربینهای بادی وجود دارد که برای پمپ کردن آب استفاده میشود که به آن پمپ بادی میگویند یا برای آسیاب گندم به کار میرود که آسیاب بادی نام دارد و موارد دیگری که هر کدام نام خاص خودشان را دارند.
آسیاب بادی
ظهور آسیاب بادی در اروپا
آسیاب بادی پس از گذشت پانصد سال از اختراع آن در خاورمیانه، تا قرن دوازدهم میلادی در اروپا ناشناخته بود. سربازانی که از جنگهای صلیبی به کشورشان بازمیگشتند، داستانهایی را دربارهٔ آسیابهای بادی نقل میکردند. اروپاییان با الهام از ایده استفاده از نیروی باد به عنوان نیروی محرکه، سرانجام نوع جدیدی از آسیاب بادی را اختراع کردند. در این نوع آسیاب بادی، همهٔ مجموعهٔ آسیاب بادی میتوانست حول محور یک دیرک مرکزی بچرخد تا پرههای آسیاب در جهت وزش باد قرار بگیرند. مدتی بعد، آسیابهای بادی سادهتری که به شکل یک برج پره دار بود، ساخته شد؛ در این نوع آسیاب بادی، فقط پرهها همراه جریان باد میچرخیدند. با گذشت زمان آسیابهای بادی به چشماندازهای طبیعی حومه شهرهای اروپا تبدیل شد. در قرن دوازدهم میلادی هلندیها از تلمبههای آب که به وسیله آسیابهای بادی کار میکرد، برای احیای بخشهایی از خشکی که زیر آب دریای شمال قرار گرفته بود، استفاده میکردند. یک قرن بعد، در بعضی از شهرهای فرانسهبیش از ۱۲۰ آسیاب بادی نصب شده بود. در هلند، در قرن هجدهم، بیش از ۷۰۰ آسیاب بادی در امتداد رودخانه زان احداث شده بود.
مقایسه نیروی باد و نیروی آب
آسیابهای بادی مقایسه با آسیابهای آبی از امتیازهای بسیاری برخوردار بودند. اول آن که نیازی نبود که آسیابهای بادی نزدیک جریان آب احداث شوند. به علاوه اگر آب در زمستان یخ میزد، آسیابهای آبی از کار میافتادند در حالی که آسیابهای بادی به کار خود ادامه میدادند. امتیاز دیگر آسیابهای بادی این بود که رودخانههایی که در کنار آنها آسیابهای آبی ساخته میشد، معمولاً تخت نظارت مالکین و زمین داران قدرتمند قرار داشت و آنها بودند که اجازه میدادند چه کسی حق احداث آسیاب آبی و آرد کردن گندم را داشته باشد. رواج آسیابهای بادی موجب رهایی مردم عادی از قید و بند مالکین شد.
انواع توربینهای بادی
پرهٔ توربینهای بادی میتواند به دور محور افقی یا عمودی دوران کند. توربین بادی با محور افقی، پیشینهٔ بیشتری داشته و امروزه هم بیشتر مورد استفاده قرار میگیرد. در مقابل، مزیت توربین بادی با محور عمودی، عدم حساسیت نسبت به جهت وزش باد و عدم نیاز به یک پایهٔ مرتفع است.
توربین بادی با محور افقی
در توربینهای بادی با محور افقی (Horizontal Axis Wind Turbine) که به اختصار HAWT هم نامیده میشوند، روتور و ژنراتور الکتریکی در بالای یک برج بلند قرار گرفته و باید در راستای باد قرار گیرند. توربینهای بادی کوچک برای تعیین جهت وزش باد از یک بادنمای ساده استفاده میکنند، ولی توربینهای بزرگتر معمولاً از یک سنسور باد که با یک سرووموتور در ارتباط است، استفاده میکنند. بیشتر این توربینهای بادی، با استفاده از یک جعبهدنده، سرعت چرخش کُند پرهها را به سرعت بیشتری برای ژنراتور تبدیل میکنند.
-
توربینهای بادی امروزی
- توربینهای بادی که امروزه در نیروگاههای بادی برای تولید تجاری برق مورد استفاده قرار میگیرند، معمولاً سه-پره بوده و با استفاده از سامانههای کنترل رایانهای در جهت وزش باد قرار میگیرند. البته توربینهای باد با دو پره و حتی یک پره هم استفاده میشوند. پرههای این توربینها، معمولاً طولی بین ۲۰ تا ۴۰ متر و حتی بیشتر و سرعت دورانی حدود ۱۰ تا ۲۲ دور بر دقیقه دارند. اگر طول پرهٔ یک توربین بادی، ۴۰ متر بوده و با سرعت ۲۰ دور بر دقیقه دوران کند، سرعت خطی نوک پرههای آن، حدود ۸۴ متر بر ثانیه (۳۰۲ کیلومتر بر ساعت) خواهد بود. برجی که پرهها بر بالای آن نصب میشوند، به صورت لولهٔ فولادی و به ارتفاع ۶۰ تا ۹۰ متر است. معمولاً با استفاده از جعبهدنده، سرعت چرخش محور افزایش داده میشود، ولی در برخی از طراحیها، محور با همان سرعت یک ژنراتور حلقوی را میچرخاند. برخی از مدلهای توربین بادی، در سرعت ثابت کار میکنند ولی توربینهای با سرعت متغیر انرژی بیشتری میتوانند تولید کنند؛ که به واسطه نیروی لیفت و دراگ پرهها به حرکت در میآیند.
توربین بادی با محور عمودی
در توربینهای بادی با محور عمودی (Vertical Axis Wind Turbine) که به اختصار VAWT نامیده میشود، روتور اصلی بهصورت عمودی قرار میگیرد. مهمترین برتری این نوع از توربینهای بادی آن است که نیازی به تنظیم جهت قرارگیری نسبت به جهت وزش باد ندارند. این نکته در مکانهایی که جهت وزش باد خیلی متغیر است، مثلاً در بالای ساختمانهای مسکونی، یک امتیاز بهشمار میرود. مهمترین عیب این نوع توربینها، کمبودن سرعت دورانی آنها و در نتیجه زیادبودن گشتاور و هزینهٔ بیشتر سیستم انتقال قدرت، بارگذاری دینامیکی زیاد پرهها و همچنین پیچیدگی زیاد طراحی و تحلیل ایرفویل پرهها پیش از ساخت پیشنمونه (پروتوتایپ) است. با توجه به عمودی بودن محور، جعبهدنده و ژنراتور میتوانند در نزدیکی زمین قرار گیرند که این موضوع دسترسی به این تجهیزات را برای نگهداری و تعمیر آسانتر میکند.
توربینهای بادی با محور عمودی به شکلهای مختلفی ساخته میشوند. دو نوع عمدهٔ آنها، توربینهای داریوس وساوونیوس هستند.
توربینهای بادی چگونه کار میکنند؟
توربینهای بادی انرژی جنبشی باد را به توان مکانیکی تبدیل مینمایند و این توان مکانیکی از طریق شفت به ژنراتور انتقال پیدا کرده و در نهایت انرژی الکتریکی تولید میشود. توربینهای بادی بر اساس یک اصل ساده کار میکنند. انرژی باد دو یا سه پرهای را که بدور روتور توربین بادی قرار گرفتهاند را بچرخش درمیآورد. روتور به یک شفت مرکزی متصل میباشد که با چرخش آن ژنراتور نیز به چرخش درآمده و الکتریسیته تولید میشود. توربینهای بادی بر روی برجهای بلندی نصب شدهاند تا بیشترین انرژی ممکن را دریافت کنند بلندی این برجها به ۳۰ تا ۴۰ متر بالاتر از سطح زمین میرسند. توربینهای بادی در بادهایی با سرعت کم یا زیاد و در طوفانها کاملاً مفید میباشند.
طراحی و ساخت توربینهای بادی
برای تعیین ارتفاع بهینهٔ برج، سیستم کنترلی، تعداد و شکل پرهها از شبیهسازیهای آیرودینامیکی استفاده میشود.
توربینهای با محور افقی متداول، به سه بخش اصلی تقسیم میشوند:
- بخش روتور، که تقریباً ۲۰٪ قیمت توربین باد را به خود اختصاص داده و شامل پرههای تبدیلکنندهٔ انرژی باد به انرژی جنبشی دورانی با سرعت کم میشود.
- بخش ژنراتور که حدوداً ۳۴٪ هزینهٔ توربین باد بوده و شامل مولد الکتریکی، تجهیزات کنترلی و جعبهدنده برای افزایش سرعت دورانی محور توربین میشود.
- بخش تکیهگاهی که در بر گیرندهٔ ۱۵٪ قیمت توربین بوده و شامل برج و مکانیزم جهتدهی روتور نسبت به جهت وزش باد میشود.
اجزای تشکیل دهنده توربین بادی
- باد سنج (Anemometer): این وسیله سرعت باد را اندازه گرفته و اطلاعات حاصل از آن را به کنترلکنندهها انتقال میدهد.
- پرهها (Blades): بیشتر توربینها دارای دو یا سه پره میباشند. وزش باد بر روی پرهها باعث بلند کردن و چرخش پرهها میشود.
- ترمز (Brake): از این وسیله برای توقف موتور در مواقع اضطراری استفاده میشود. عمل ترمز کردن میتواند به صورت مکانیکی، الکتریکی یا هیدرولیکی انجام گیرد.
- کنترلر (Controller): کنترولرها وقتی که سرعت باد به ۸ تا ۱۶ mph میرسد ما شین را، راهاندازی میکنند و وقتی سرعت از ۶۵ mph بیشتر میشود دستور خاموش شدن ماشین را میدهند. این عمل از آن جهت صورت میگیرد که توربینها قادر نیستند زمانی که سرعت باد به ۶۵ mph میرسد حرکت کنند زیرا ژنراتور به سرعت به حرارت بسیار بالایی خواهد رسید.
- گیربکس (Gear box): چرخ دندهها به شفت سرعت پایین متصل هستند و آنها از طرف دیگر همانطور که در شکل مشخص شده به شفت با سرعت بالا متصل میباشند و افزایش سرعت چرخش از ۳۰ تا ۶۰ rpm به سرعتی حدود ۱۲۰۰ تا ۱۵۰۰ rpm را ایجاد میکنند. این افزایش سرعت برای تولید برق توسط ژنراتور الزامیست. هزینه ساخت گیربکسها بالاست درضمن گیربکسها بسیار سنگین هستند. مهندسان در حال انجام تحقیقات گستردهای میباشند تا درایوهای مستقیمی کشف نماید و ژنراتورها را با سرعت کمتری به چرخش درآورند تا نیازی به گیربکس نداشته باشند.
- ژنراتور (Generator): که وظیفه آن تولید برق متناوب میباشد و بیشتر از نوع ژنراتورهای القایی میباشد.
- شفت با سرعت بالا (High-speed shaft): که وظیفه آن به حرکت درآوردن ژنراتور میباشد.
- شفت با سرعت پایین (Low-speed shaft): رتور حول این محور چرخیده و سرعت چرخش آن ۳۰ تا ۶۰ دور در دقیقه میباشد.
- روتور (Rotor): بالها و هاب به روتور متصل هستند.
- برج (Tower): برجها از فولادهایی که به شکل لوله درآمدهاند ساخته میشوند. توربینهایی که بر روی برجهایی با ارتفاع بیشتر نصب شدهاند انرژی بیشتری دریافت میکنند.
- جهت باد (Wind direction): توربینهایی که از این فناوری استفاده میکنند در خلاف جهت باد نیز کار میکنند در حالی که توربینهای معمولی فقط جهت وزش باد به پرههای آن باید از روبرو باشد.
- باد نما (Wind vane): وسیلهای است که جهت وزش باد را اندازهگیری میکند و کمک میکند تا جهت توربین نسبت به باد در وضعیت مناسبی قرار داشته باشد.
- درایو انحراف (Yaw drive): وسیله ایست که وضعیت توربین را هنگامیکه باد در خلاف جهت میوزد کنترول میکند و زمانی استفاده میشود که قرار است روتور در مقابل وزش باد از روبرو قرار گیرد اما زمانی که باد در جهت توربین میوزد نیازی به استفاده از این وسیله نمیباشد.
- موتور انحراف (Yaw motor): برای به حرکت درآوردن درایو انحراف مورد استفاده قرار میگیرد.
مزایا و معایب توربین بادی
توربین عمودی
مزایا توربینهای عمودی
- از مزایای این نوع توربین عمودی نسبت به توربینهای بادی محور افقی، عدم حساسیت به جهت باد و آشفتگی آن میباشد (این نکته در مکانهایی که جهت وزش باد خیلی متغیر است، مثلاً در بالای ساختمانهای مسکونی، یک امتیاز بهشمار میرود).
- عملکرد مناسب و کارا هنگام وزش بادهای مغشوش و گردابهای
- توربین بادی محور عمودی میتواند در فاصلهای نزدیکتر به زمین نصب شود و جعبهدنده و ژنراتور در نزدیکی زمین قرار میگیرند که این موضوع سبب امنیت و ارزانی بیشتر در ساخت و نگهداری و تعمیر آسانتر آن میشود و همچنین برج یا دکل نیاز به پشتیبانی آن ندارد.
- از آنجا که نوک پرهها در این نوع توربینها به محور دوران نزدیکتر است، سر و صدای کمتری نسبت به توربین محور افقی تولید میکنند و حجم واندازه کمتر آنها، برخوردهای محیطی را نیز کاهش میدهد.
معایب توربینهای عمودی
- مشکل اصلی این نوع توربینها، ایجاد نیروی مخالف نسبت به بادی که به پره دیگر میوزد، است پس بازدهی انفرادی کمتر آنها در مقایسه با توربینهای افقی و گشتاور تکانی (لنگر) که در طول هر دوره تناوب تولید میشود؛ کمتر است.
- نصب توربینهای محور عمودی روی برجها سخت است؛ بدین معنی که آنها باید در جریانهای هوایی آهستهتر با اغتشاش بیشتر و نزدیک زمین با بازده استخراج انرژی پایینتر عمل کنند.
- به دلیل کم بودن سرعت دورانی پرهها، گشتاور زیاد است.
- هزینهٔ بالای طراحی و تحلیل ایرفویل پرهها از دیگر مسایل است. جبران بازده کمتر توربینهای محور عمود از طریق چیدمان فشردهتر آنها و طراحی جدید امکانپذیر است. مسئله خستگی سازه نیز با قابلیت پیشبینی دقیقتر بارهای آیرودینامیکی تا حد زیادی قابل بر طرف شدن است.
توربین افقی
مزایای توربین افقی
- تیغهها به سمت مرکز گرانش توربین اند که به ثبات آن کمک میکند.
- تیغهها برای قرارگیری در بهترین زاویه قابلیت پیچ و تاب دارند
- با پیچ کردن تیغهها به روتور آسیبها در طوفان به حداقل میرسد.
- بلندی برج این امکان را میدهد تا دسترسی به بادهای شدید و قوی بیشتر شود.
- قابل استفاده در زمینهای ناهموار و دور از ساحل بیشتر آنها شروع خودکار دارند.
معایب توربین افقی
- کارکرد سخت در نزدیک سطح زمین
- سختی درحمل و نقل
- مشکل در نصب و راهاندازی
- در مجاورت رادار تحت تأثیر قرار میگیرد
- تعمیر و نگهداری آن سخت است
طراحی های جدید توربین های بادی
توربین گردبادی
اولین توربین گردبادی جهان توسط یک مهندس ژاپنی به نام آتسوشی شیمیزو اختراع شد. این توربین میتواند با استفاده از طوفانهای شدید، حجم زیادی از انرژی را تولید کند. بنا به تخمین شیمیزو، چنانچه انرژی این گردبادها مهار شود انرژی کشورش تا ۵۰ سال آینده تامین میشود!
توربین شیمیزو که شبیه یک دستگاه همزن آشپزخانه است شامل یک محور عمودی است که با استفاده از اثر مگنوس مسیر جریان باد را به شکل منحنی منحرف میکند و در برابر طوفانهای قوی مقاوم است.
نتایج آزمونهای انجام شده بر مدل ساخته شده از ژنراتور این توربین، نتایج رضایتبخشی از خود نشان داده است. اکنون شیمیزو سعی دارد که سرمایهگذاران را برای ساخت نسخهی عملی و بزرگتر این توربین متقاعد کند تا انرژی مورد نیاز کشورها از طریق آن تامین شود.
توربین هیبریدی بادی-آبی
یک توربین بادی، بدون وجود هیچ گونه نسیم و بادی چگونه میتواند کار کند؟ طبیعتا توربینهای معمولی در این شرایط قادر به کار کردن نیستند.
طی پروژهی جدیدی که از سوی دو شرکت Max Bogl Wind AG و GE Renewable Energy ارایه شده است، توربینهای پرهای سنتی با تکنولوژی برق آبی آمیخته شده و اولین منبع انرژی هیبریدی بادی-آبی را تولید کرده است.
قرار است که این نوع توربین در جنگل Swabian-Franconian در آلمان نصب شود. طرح اولیه شامل پیادهسازی چهار توربین بادی با ظرفیت ۱۳.۶ مگاوات است. فاز اول، این انرژی از سال آینده به شبکه متصل خواهد شد و فاز دوم، یک نیروگاه انرژی برق آبی به ظرفیت ۱۶ مگاوات خواهد بود. این پروژه در سال ۲۰۱۸ به اتمام خواهد رسید.
توربینهای بادی شناور هلیومی
اگرچه اکثر توربینهای بادی روی زمین یا دریا به صورت ثابت نصب شدهاند، اما نوآوریهای اخیر این سالها به طراحی توربینهایی منجر شده است که در ارتفاعات هوا کار میکنند. چرا که جریان باد در این قسمت سریعتر است. اولین توربین بادی جهان که در هوا مستقر است .
در سال ۲۰۱۴ و بر فراز منطقهی فیربنکس آلاسکا، شروع به کار کرد. این توربین با گاز هلیوم پر شده و شبیه به یک بالون غولپیکر به نظر میرسد. این توربین توسط یکی از استارتاپهای دانشگاه MIT به نام Altaeros Energies طراحی شده است و در فاصلهی ۳۰۰ متری زمین قرار دارد.
توربین هلیومی این قابلیت را دارد که جریان باد را بین پنج تا هشت برابر قدرتمندتر از توربینهای مستقر روی زمین جذب کند. این آزمایش ۱۸ ماهه نشان داد که توربینهای هلیومی قدرت تامین انرژی چندین خانوار را دارند. ضمن این که قرار گرفتن این توربینها در ارتفاعات میتواند امکان انتقال سیگنالهای وایفای، تلفن و حسگرهای هواشناسی را فراهم کند.
توربین بادی بدون پرهی ورتکس (Vortex)
در نظر گرفتن وضعیت ایمنی پرندگان، یکی از بزرگترین چالشها در طراحی توربینهای بادی در جهان است. از این رو، به منظور کاهش خطراتی که پرندگان را تهدید میکند، مهندسان توانستهاند توربین بدون پرهای به نام ورتکس را تولید کنند که بیشتر از این که شبیه توربین بادی باشد، یک ستون بلند است.
این نوع توربین انرژی را از طریق چرخش گردابههای ناشی از تلاطم هوا، تامین میکند و از آنجا که ژنراتورهای انرژی بادی آن، بلند و باریک هستند، تعداد بیشتری از آنها در یک فضای مشخص جای میگیرند. سازندگان این توربینها میگویند: ورتکسهای بدون پره هزینههای تولید را ۵۳ درصد و هزینههای نگهداری را تا ۸۰ درصد نسبت به توربینهای سنتی کاهش میدهد.
توربین بادی اینولوکس (INVELOX)
این نوع توربین بادی قادر است تا ۶۰۰ برابر انرژی بیشتری از آسیابهای بادی معمولی تولید کند. طراحی تونل مانند این توربین کمک میکند تا نسیمهای ملایم با سرعتهای کم جمعآوری شده و به سمت داخل توربین هدایت شوند. ژنراتور اینولوکس علاوه بر قابلیت تولید انرژی در شرایط بادی ضعیف، به علت نداشتن پرههای چرخندهی خارجی سرعت بالا، خطری برای حیات وحش محلی به حساب نمیآید. ضمن این که هزینهی ساخت آن از توربینهای بادی سنتی هم ارزانتر است.
توربین بادی Catching Wind Power
یکی از قدیمیترین ایدههای مطرح شده در این زمینه، توسط یک نظامی بازنشستهی ۸۹ ساله مطرح شد که خود از دوستداران حیات پرندگان بود. در سال ۲۰۱۲، ریموند گرین، ژنراتوری بادی به نام Catching Wind Power طراحی کرد که میتواند جریان باد را توسط دستگاهی که همانند یک بلندگوی بزرگ به نظر میرسد، جمعآوری کرده و سپس باد جمعآوری شده را به منظور انرژی بیشتر در توربین، فشرده کند. از طرفی چون این توربین فاقد اجزای متحرک خارجی است، هیچ گونه تهدیدی برای پرندگان یا خفاشها شمرده نمیشود و نسبت به توربینهای فعلی عملکرد ایمنتری دارد. از آنجا که گرین این سیستم را مقیاسپذیر طراحی کرده است، جای امیدواری وجود دارد که بتوان از آن برای تامین انرژی واحدهای مسکونی و صنعتی استفاده کرد.